If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-7y-144=0
a = 1; b = -7; c = -144;
Δ = b2-4ac
Δ = -72-4·1·(-144)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-25}{2*1}=\frac{-18}{2} =-9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+25}{2*1}=\frac{32}{2} =16 $
| 2x-15x=20 | | 12x-12=1/12 | | 12x-12=1/2 | | x*0.85=130 | | -2(x-2)-x=12 | | 13=5y-7 | | 3x*(3x^2-4)=(3x+6)^2 | | 42x=81 | | 95-4x=85-3.5 | | -6+7y-3y=-10 | | 7v^2+11v-6=0 | | F(x)=8x-16= | | 62x+9)=7x+14 | | 6r-4r+4=9r+4-r | | 14-3(x+2)=7x-18 | | 3b+7b+10-5=55 | | 108=-6(4k-2) | | 58-2x+64-4x=180 | | -2/3r+3/7=1/2 | | 25x+15=5x+15 | | x14=-42 | | 2x-95=1.5x | | 2x=1.5x-95 | | x+20=5x+14 | | 20+2x=14+3x | | 6(x+7)=7x+11 | | 3(7+2x)=8x | | 8(x+2)-7=6x+2(5+x) | | 20=2(2x+9) | | 12x2+21x-106=0 | | -25+2x=39 | | (x+4)^2=-5 |